
Week 2 - Friday

 What did we talk about last time?
 Selection statements (if)
 random library
 Monte Carlo approximation

 Sometimes you have to make a decision
 If a condition is true, you go one way, if not, you go the other
 For example:
 If I win the lottery,
▪ I'll buy a Lamborghini

 Otherwise,
▪ I'll cry myself to sleep

 Note the nature of this kind of condition
 Both outcomes cannot happen
 Either you buy a Lamborghini or cry yourself to sleep, never both

 For these situations, we use the else construct

Two different
outcomes

if condition :
A statements

else :
B statements

if balance < 0:
print('You are in debt!')

else:
print('You have $' + str(balance))

 What if you have a list of mutually exclusive conditions?
 You can tie all the possibilities together starting with if, then for each

additional condition, you use elif to check it, and then you can
optionally end with an else if none of the other conditions were met

if index == 1:
print('First')

elif index == 2:
print('Second')

elif index == 3:
print('Third')

else:
print(str(index) + "th")

 The random library lets us produce random numbers
 It has two functions that will be useful to us:
 randint(a, b): Returns a random integer nwhere a ≤ n ≤ b
 random(): Returns a random floating-point value from [0, 1)

 To use them, import random and then call the functions
qualified by random followed by a period:

import random

dice = random.randint(1, 6)
percentage = random.random()

 We can do something called a
Monte Carlo approximation of π

 We "throw" darts at a 1 x 1 square
in the upper right corner of a
circle with radius 1

 We count the ones that fall inside the circle and
divide by the total darts thrown

 That fraction is an estimation of the area of one
fourth of the circle

 By multiplying by 4, we approximate π

y

x

 Here is a function that performs the Monte Carlo
approximation:

import random

def monteCarlo(darts):
hits = 0
for i in range(darts):

x = random.random()
y = random.random()
if x*x + y*y <= 1.0: # see if dart is in circle

hits += 1
return 4.0 * hits / darts

 We can use the turtle package to
draw the darts that we "throw" when
doing the Monte Carlo approximation

 We need to do two things:
 Scale the screen so that it's the right size

for the dots we're drawing
▪ We want the screen to go from (0, 0) up to (1, 1)

 Draw a blue dot when the dart is in the
circle and a red dot when it's not

(o, 0) (1, 0)

(o, 1)

 How far do the coordinates stretch on the normal turtle screen?
 Who knows?!

 However, we can get the screen with the following command (as
long as we already imported turtle)

 Then, we can set the minimum x, minimum y, maximum x, and
maximum y with the setworldcoordinates() method

screen = turtle.Screen()

screen.setworldcoordinates(0, 0, 1, 1) #(0,0) to (1,1)

 To draw a dot at a location, use the goto()method followed by
the dot()method

 Assuming you have a turtle object named yertle:

 Before drawing a dot, you can set the color to draw by calling the
color()method with a color:

 Before drawing dots, put the turtle's tail up with the up()
method so that it doesn't draw lines everywhere

yertle.goto(x, y)
yertle.dot()

yertle.color('blue')

 Strings
 Concatenation
 Repetition
 Indexing
 Slicing
 Searching

• 20 employers in the fields of
Engineering and Computer Science

• 20 alumni members attending
• Free professional LinkedIn

headshots
• Plenty of food and great

conversations
• Build new connections on LinkedIn
• Door prizes
• Network with people in your field
• Learn about possible internships
• Gain new insights about your major
• Required event for all sophomores

 Read Section 3.2 of the textbook
 Finish Assignment 1
 Due tonight by midnight!

 Work on Assignment 2
 Due next Friday by midnight

	COMP 1800
	Last time
	Questions?
	Else
	Either/Or
	Exclusivity
	Anatomy of an if-else
	else example
	if and elif
	Back to Monte Carlo
	Recall the random library
	Monte Carlo approximation of π
	Monte Carlo approximation function
	Drawing the Monte Carlo approximation
	Scaling the screen
	Drawing dots
	Work Time for Assignments 1 and 2
	Upcoming
	Next time…
	Slide Number 20
	Reminders

